Thermal analysis of bone cement polymerisation at the cement-bone interface.
نویسندگان
چکیده
The two major problems that have been reported with the use of polymethylmethacrylate (PMMA) cement are thermal necrosis of surrounding bone due to the high heat generation during polymerisation and chemical necrosis due to unreacted monomer release. Computer models have been used to study the temperature and monomer distribution after cementation. In most of these models, however, polymerisation is modelled as temperature independent and cancellous bone is modelled as a continuum. Such models thus cannot account for the expected important role of the trabecular bone micro-structure. The aim of this study is to investigate the distribution of temperature and monomer leftover at the cancellous bone-cement interface during polymerisation for a realistic trabecular bone-cement micro-structure and realistic temperature-dependent polymerisation kinetics behaviour. A 3-D computer model of a piece of bovine cancellous bone that underwent pressurization with bone-cement was generated using a micro-computed tomography scanner. This geometry was used as the basis for a finite element model and a temperature-dependent problem for bone cement polymerisation kinetics was solved to simulate the bone cement polymerisation process in the vicinity of the interface. The transient temperature field throughout the interface was calculated, along with the polymerisation fraction distribution in the cement domain. The calculations revealed that the tips of the bone trabeculae that are embedded in the cement attain temperatures much higher than the average temperature of the bone volume. A small fraction of the bone (10%) is exposed to temperatures exceeding 70 degrees C, but the exposure time to these high temperatures is limited to 50s. In the region near the bone, the cement polymerisation fraction (about 84%) is less than that in the centre (where it is reaching values of over 96%). An important finding of this study thus is the fact that the bone tissue that is subjected to the highest temperatures is also subjected to high leftover monomer concentration. Furthermore the maximum bone temperature is reached relatively early, when monomer content in the neighbouring cement is still quite high.
منابع مشابه
Porosity reduction in bone cement at the cement-stem interface.
The fatigue failure of bone cement, leading to loosening of the stem, is likely to be one mode of failure of cemented total hip replacements. There is strong evidence that cracks in the cement are initiated at voids which act as stress risers, particularly at the cement-stem interface. The preferential formation of voids at this site results from shrinkage during polymerisation and the initiati...
متن کاملThermal Analysis of the Tibial Cement Interface with Modern Cementing Technique
BACKGROUND The major cause of cemented Total Knee Arthroplasty (TKA) failure is aseptic loosening of the tibial component necessitating revision surgery. Recently, multiple techniques have been described to maximize cement penetration depth and density in the proximal tibia during TKA to potentially avoid early loosening. While cement polymerisation is an exothermic reaction, minimal investigat...
متن کاملConduction analysis of cement interface temperature in total knee arthroplasty.
We applied an axisymmetric model of the tibia to a finite element method and analyzed the heat conduction from bone cement in total knee arthroplasty using numerical simulation with the finite element analysis software, ABACUS. We hypothesized the thermal necrotic map of bone. Moreover, we suggested a method for preventing thermal necrosis of bone using this simulation. We adopted an initial te...
متن کاملEffects of pre-cooling and pre-heating procedures on cement polymerization and thermal osteonecrosis in cemented hip replacements.
Numerical studies were performed to investigate bone cement polymerization, temperature history and thermal osteonecrosis in cemented hip replacements with finite element methods. In this paper, the effects of pre-cooling and pre-heating of the prosthesis and/or the cement prior to implantation were simulated. It was found that the cement polymerization initiated near the bone-cement interface ...
متن کاملThe temperature problem at the bone-acrylic cement interface of the total hip replacement.
Loosening of total joint replacements may be caused in part by thermal necrosis of bone in contact with the high temperature of the polymerizing PMMA acrylic cement. This study reports a method to reduce the temperature of the bone-cement interface below the temperature at which bone results in definite necrosis. By precooling the acetubular component to --84 degrees before insertion into the c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biomechanics
دوره 37 12 شماره
صفحات -
تاریخ انتشار 2004